a2 United States Patent

Yamauchi et al.

US009141429B2

US 9,141,429 B2
Sep. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)
")

@
(22)
(65)

(63)

(1)

(52)

(58)

MULTICORE PROCESSOR SYSTEM,
COMPUTER PRODUCT, AND CONTROL
METHOD

Applicant: FUJITSU LIMITED, Kawasaki-shi,

Kanagawa (JP)

Inventors: Hiromasa Yamauchi, Kawasaki (JE);
Koichiro Yamashita, Hachioji (JP);
Kiyoshi Miyazaki, Machida (JP);
Hitoshi Ikeda, Saitama (JP)

Assignee: FUJITSU LIMITED, Kawasaki (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 397 days.

Appl. No.: 13/624,353

Filed: Sep. 21, 2012

Prior Publication Data
US 2013/0024588 Al Jan. 24, 2013

Related U.S. Application Data

Continuation of application No. PCT/JP2010/055287,
filed on Mar. 25, 2010.

Int. Cl1.

GO6F 9/50 (2006.01)

GO6F 13/14 (2006.01)

GO6F 13/16 (2006.01)

GO6F 13/362 (2006.01)

U.S. CL

CPC ... GO6F 9/5027 (2013.01); GO6F 13/1605

(2013.01); GO6F 13/362 (2013.01); GOGF
2209/5021 (2013.01)
Field of Classification Search
CPC . GOG6F 13/1605; GO6F 13/362; GOGF 13/364;
GOG6F 9/5027
USPC 710/113, 240
See application file for complete search history.

S1301

HAS CHANGE IN'
STATE OF ASSIGNMENT
BEEN DETECTED?,

NO

TASK DISPATCH

OBTAIN PRIORITY OF DISPATCHED
PROCESS

OBTAINED PRIORITY HIGH?

YeES

$1307
OBTAIN AGCESS FREQUENCY FOR EACH
PROCESS ASSIGNED TO CPUs

(56) References Cited
U.S. PATENT DOCUMENTS

7,133,950 B2* 11/2006 Olukotun
2006/0123420 Al 6/2006 Nishikawa

710/240

FOREIGN PATENT DOCUMENTS

EP 1544 737 6/2005

JP 2-143363 6/1990

JP 5-165760 7/1993

JP 2008-158687 7/2008

JP 2008-217825 9/2008
OTHER PUBLICATIONS

International Search Report of Corresponding PCT Application PCT/
JP2010/055287 mailed Jul. 6, 2010.

Hironori Kasahara, “Parallel Processing Technology”, Corona Pub-
lishing Co., Ltd., 1991, pp. 130-131, 198.

Japanese International Preliminary Report on Patentability for PCT/
JP2010/055287 (11 pages).

Extended European Search Report dated Jul. 30, 2015 in correspond-
ing European Patent Application No. 10848404.9.

* cited by examiner

Primary Examiner — Glenn A Auve
(74) Attorney, Agent, or Firm — Staas & Halsey LLP

(57) ABSTRACT

A multicore processor system includes a core configured to
detect a change in a state of assignment of a multicore pro-
cessor; obtain, upon detecting the change in the state of
assignment, number of accesses of a common resource shared
by the multicore processor by each of process that are
assigned to cores of the multicore processor; calculate an
access ratio based on the obtained number of accesses; and
notify an arbitration circuit of the calculated access ratio, the
arbitration circuit arbitrating accesses of the common
resource by the multicore processor.

11 Claims, 13 Drawing Sheets

TASK SWITCHOR
TASK COMPLETION

OBTAIN PRIORITY FOR EAGH OF
PROCESS ASSIGNED TO CPUs

PROCESS
HAVING HIGH PRICRITY IS
UNDER EXECUTION?,

NO /51808

51308

CALCULATE ACCESS RATIO OF CPUs
BASED ON ACCESS FREQUENCY
OBTAIN NUMBER OF ACCESSES BY EACH | ¢(500
OF PROCESS ASSIGNED TO CPUs

DETERMINE VALUES CONSTITUTING
ACCESS RATIO TO BE SAME

CALCULATE TOTAL NUMBER OF ACCESSES | ¢ 1140
BY PROGESSES ASSIGNED TO CPUs

‘TIME SLICE=UNIT OF TIME/TOTAL
NOTIFY ARBITRATION GIRCUIT OF
ACCESS RATIO AND TIME SLICE

s13n1

s1312

US 9,141,429 B2

Sheet 1 of 13

Sep. 22, 2015

U.S. Patent

_‘Orzﬂ

€0l

J1avl

ALIHONMd

J1avl

S53004d

AHOW3N A3HVHS

v

b

LINDHIO NOILYHLIgHY
201’ § i) 3 { { !
3JHOVD 3JHOVO 3IHOVD IHOVD JHOVD 3IHOVYD IHOVD IHOVD
1#NdD 9#NdD G#NdD P#NEOD £#NdD Z#NdD L#NdD 0#NdO
¥31NAIHOS
b/

004

=

US 9,141,429 B2

Sheet 2 of 13

Sep. 22, 2015

U.S. Patent

. SS300dd
. SS300¥d
1000°0 000t MO ALNYINNYEO-3SHYOD g4 SS3004d
10000 0001 MO SS300¥d Ileop ¢V S§S300dd
. SS300Yd _L-
10000 0001 MO ALIMYINNYYO-ISHYOD ¢"1-V SS300dd
1000000°0 00001 HOIH SS300Yd ssoioeop }-1-V¥ SS300¥d
. SS300¥d -
¢000°0 0001 MO ALNYINNYED-3SHYOD 1-V §S300dd
. SS300¥d
G0000°0 0002 MO ALNYTNNVEO-ISHYOD Vv §S3004d
SNOILVY3ll
AON3INOD3IH-
/S3SS30JV ALIEOIMd ALIEGVINNVYYEO SS300¥d
SS300V sNg 40 Y39ANN
] m ! T f I~
€21 So¢ y0oc X074 c0c 4074

US 9,141,429 B2

Sheet 3 of 13

Sep. 22, 2015

U.S. Patent

AHOWIN
€0} a3a™VvHS

<
0L
< : >
\ 4
Z01 — 1INDYID NOILYHLIgHY
F § h
A\ 4 \ 4
IHOVD JHOVD omwm
LE#NdD 0#NdD A m
‘0 udn3eu
e ¥3TINA3HOS
e anensmmammRm———" ==
SS300¥d : (B3’ [puy)ElS ounj
ALIVINNYYSD | "[--m=emsggmsssommmmmmsseess 7
-38YV0OD
Yurew 3ui

€Old

et

US 9,141,429 B2

Sheet 4 of 13

Sep. 22, 2015

U.S. Patent

AHOW3N
€0l A3¥vHS

00v

-
L0l \
< , —>
A 4
201 — 1INOYID NOLLYHLIgHY
A N
A 4 Y
3HOVD JHOVD
L#NdD 0#NdD
bLL— H3ITINA3IHOS
(1-N) ~ (2/N)=! (L-2/N) ~ 0=l
SS3D0Hd lleop SS3AD0Md Heop

¥ Old

{

T [o+[1e=[1]e
ey [P=[1]0
ey I1]Q=[1]e

]
(++I'N>I'0=h)404

US 9,141,429 B2

Sheet 5 0of 13

Sep. 22, 2015

U.S. Patent

AHONW3N
€0} a3ayvHs

<=
10l \
< .
A
A 1INDYID NOLLYHLIgHY
A A
A \ 4
IJHOVD IJHOVD
L#NdO 0#NdD
bl — H3TINA3IHOS
(L-N) ~ (Z/N)=! (1-2/N) ~ 0=t
8S300%d SS3004d
SS010e0pP SS0.I0oeop

G Old

()SNOILYH3lI
N3I3M13g
AONIAN343a

00S
\ ,

{
AHESHE
|y [e=[]o

-
§

(++I'N>Y0=1104

‘-.'

US 9,141,429 B2

Sheet 6 of 13

Sep. 22, 2015

U.S. Patent

¥31NAIHOS
1INN 1INN . 1INN « 1INN 1INN
ONIALILON ONILYIND VO ONININYIL3A ONINIV180 ONILO313a
) j)] A |
509 09 €09 209 109
]
L

Jiavl

ALIYOINd

-

9'Old ee

US 9,141,429 B2

Sheet 7 of 13

Sep. 22, 2015

U.S. Patent

Jgvl

31avlL

00}k

. 9Old

E2L 1 Alrdordd ssaooud [T e
coL AHOWIN QIHVHS
A 10Ly 1 v
{
A NI8OY aNNOY v
1INOYIO NOLLYHLIGYY
] I ; Pt I I I
3HOVO 3HOVO IHOVD 3HOVD 3HOVD 3IHOVD 3HOVD 3HOVO
1#0dD 9#NdD S#NdO wndo || e#ndd Z#NdD L#NdO 0#NdO
30I7S INIL ANV OLLYY IJ
$$390V 30 NOILYOIILON 3AI9 ™
[¥3INAIHOS |
[
9 $5300¥d g $8300¥d vV $§3004d

U.S. Patent Sep. 22, 2015 Sheet 8 of 13 US 9,141,429 B2

........

FIG.8

0.000025
I
|

ts=

ACCESS
PERMISSION

US 9,141,429 B2

Sheet 9 of 13

Sep. 22, 2015

U.S. Patent

101y

1x44

£0L

319vL
ALlbOIEd

31gv.L
SS300¥d

AHOWIN Q3HVHS

)

-

NIg0od ONNOY

LiNOHID NOILVY LigyV

w7 ; ; (I 3 w 3
3HOVO IHOVD IHOVO 3HOVD 3HOVD 3HOVO IHOVD 3HOVO
L#NdD 9#NdD S#NdO v#Nd0 |i| e#ndo Z#NdO 1#NdO 0#NdD

3017S INIL ONV OlLLYY |
$S300V 30 NOILVOIILON FAID

| ¥3IINAIHOS _

we. .

0553008d | |8553008d | | 255004 [@] 363004y [8539054 | semomud |

7 . .
v $S3004d

69ld

U.S. Patent Sep. 22, 2015 Sheet 10 of 13 US 9,141,429 B2

.........
.........

8?0

FIG.10

0.000025
1 |
L

0

f

ACCESS
PERMISSION

US 9,141,429 B2

Sheet 11 of 13

Sep. 22, 2015

U.S. Patent

1Oy

1443

€0l

Jiavil
ALlHORd

378vVL
$83004d

AYOWIW Q3HVHS

—

743

{

NIgOd ANNOY d31HOIIM

1INDYIC NOLLY¥HLIgdY

J A
T) 7 I ; ;]
3HOVD 3HOVD IHOVO aHovo || i]] amHovo 3HOVO 3HOVD IHOVD
2#ndD 9#NdD S#NdD v#ndo || e#ndd Z#NdD 1#NdD 0#Nd0
301 INIL ONY OlLvY |
S$S300V 30 NOILVOISILON JAID ~}
| ¥3INA3HOS |
b/
IAVIS 2 nvisezv |, [u3svwey z-Lv A I S S
O SS300Md| 18853008 | | gg300md [®] ss3o0ud [S5F00ud | | SSI00Md | | ssIooud [ss30OMd |
1 I B N
-y
$8300¥d
4 t
00l F P.mu_nm V §53004d

U.S. Patent Sep. 22, 2015 Sheet 12 of 13 US 9,141,429 B2

800
I
2

FIG.12

7.69231x107-10
| t
!
0

ts

ACCESS
PERMISSION

U.S. Patent Sep. 22, 2015

FIG.13

START

.

51301

HAS CHANGE IN
STATE OF ASSIGNMENT
BEEN DETECTED?

[51302 TASK DISPATCH

OBTAIN PRIORITY OF DISPATCHED
PROCESS

S$1303

OBTAINED PRIORITY HIGH?

YES

YES

Sheet 13 of 13 US 9,141,429 B2
TASK SWITCH OR
TASK COMPLETION
NO
. [51304

OBTAIN PRIORITY FOR EACH OF
PROCESS ASSIGNED TO CPUs

51305
PROCESS
HAVING HIGH PRIORITY IS

[81307 !

UNDER EXECUTION?

OBTAIN ACCESS FREQUENCY FOR EACH
PROCESS ASSIGNED TO CPUs

NO [S1306

CALCULATE ACCESS RATIO OF CPUs

DETERMINE VALUES CONSTITUTING
ACCESS RATIO TO BE SAME

*‘

BASED ON ACCESS FREQUENCY
$1308 <

OBTAIN NUMBER OF ACCESSES BY EACH

OF PROCESS ASSIGNED TO CPUs — 51309
I
Y
CALCULATE TOTAL NUMBER OF ACCESSES | g4410
BY PROCESSES ASSIGNED TO CPUs
¥
TIME SLICE=UNIT OF TIME/TOTAL - 51311
Y
NOTIFY ARBITRATION CIRCUIT OF | ¢4
ACCESS RATIO AND TIME SLICE

US 9,141,429 B2

1
MULTICORE PROCESSOR SYSTEM,
COMPUTER PRODUCT, AND CONTROL
METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of Interna-
tional Application PCT/JP2010/055287, filed on Mar. 25,
2010 and designating the U.S., the entire contents of which
are incorporated herein by reference.

FIELD

The embodiment discussed herein is related to a multicore
processor system, a control program, and a control method
for controlling an arbitration circuit that arbitrates access of a
common resource shared by a multicore processor.

BACKGROUND

In a conventional shared-memory multicore processor sys-
tem, coherence between caches has to be maintained if one of
the central processing units (CPUs) updates shared data on a
cache, to enable other CPUs to access the latest data updated
from the shared data. Maintaining coherence between caches
is called “cache coherency.”” Snooping is one method for
cache coherency.

In the snooping, an update of shared data is detected by
monitoring, by a snoop controller, the state of lines of the
cache and caches of other CPUs and exchanging information
concerning update with the caches of the other CPUs. Upon
detection of an update, each cache purges data before the
update via a data bus or a snoop bus and caches the updated
data via a data bus.

If multiple CPUs in a multicore processor issue access
requests to a bus at the same time, an arbitration circuit
determines a CPU of which access is permitted according to
round robin, whereby a right to access the bus is given to the
CPUs sequentially.

The arbitration circuit includes a request buffer, and per-
mits access requests registered in the request buffer sequen-
tially from the top. According to round robin, an access
request concerning a process assigned to one CPU and the
other CPUs is temporarily suspended when the time (i.e., time
slice) allotted to the access request elapses, and input into the
end of the request buffer.

A process, which is a unit of processing performed by an
application, is classified into two categories, namely, a pro-
cess representing a function, etc. (hereinafter, “coarse-granu-
larity process™) and a process representing a loop process, etc.
(hereinafter, “medium-granularity process”). The medium-
granularity process is further classified into two categories,
namely, a process having no dependency between loop itera-
tions (hereinafter, “doall process™) and a process having a
dependency between loop iterations (hereinafter, “doacross
process”) (see, for example, Japanese Patent Publication No.
2008-217825 and Kasahara, Hironori. “Parallel Processing
Technology,” CORONA PUBLISHING CO., LTD, Jun. 20,
1991, page. 131).

However, if a doacross process is divided into parallel
processes and assigned to different CPUs, respectively,
snooping has to be executed frequently due to the dependency
between iterations, thereby increasing the number of times
the bus is used.

On the other hand, if a doall process is divided into parallel
processes and assigned to different CPUs, respectively, syn-

10

15

20

25

30

35

40

45

50

55

60

65

2

chronization is taken at the end of the loop process since
calculation can be independently done for each iteration. On
the other hand, the coarse-granularity process requires no
snooping due to iteration.

Conventionally, since the right to access the bus is given to
the CPUs sequentially according to round robin, the doacross
process cannot perform snooping via the bus while the doall
process or the coarse-granularity process uses the bus,
thereby increasing the execution time of the doacross process
that frequently accesses the bus.

SUMMARY

According to an aspect of an embodiment, a multicore
processor system includes a core configured to detect a
change in a state of assignment of a multicore processor;
obtain, upon detecting the change in the state of assignment,
number of accesses of a common resource shared by the
multicore processor by each of process that are assigned to
cores of the multicore processor; calculate an access ratio
based on the obtained number of accesses; and notify an
arbitration circuit of the calculated access ratio, the arbitra-
tion circuit arbitrating accesses of the common resource by
the multicore processor.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a hardware block diagram of a multicore proces-
sor system according to an embodiment;

FIG. 2 is a diagram of an example of a priority table 123;

FIG. 3 is a diagram of an example of a coarse-granularity
process;

FIG. 4 is a diagram of an example of a doall process;

FIG. 5 is a diagram of an example of a doacross process;

FIG. 6 is a block diagram illustrating an operation of a
scheduler 111;

FIG. 7 is a diagram of a first example of assignment of
processes;

FIG. 81is adiagram of a first example of arbitrating accesses
based on a notified access ratio;

FIG. 9 is a diagram of a second example of assignment of
processes;

FIG. 10 is a diagram of a second example of arbitrating
accesses based on the notified access ratio;

FIG. 11 is a diagram of a third example of assignment of
processes;

FIG. 12 is a diagram of a third example of arbitrating
accesses based on the notified access ratio; and

FIG. 13 is a flowchart of a control performed by the sched-
uler 111.

DESCRIPTION OF EMBODIMENTS

Preferred embodiments of the present invention will be
explained with reference to the accompanying drawings.

A preferred embodiment of a multicore processor system,
a control program, and a control method according to the
present invention is described in detail below with reference
to the accompanying drawings. The multicore processor of
the multicore processor system according to the present
embodiments is a processor that includes multiple cores.

US 9,141,429 B2

3

Provided the multicore processor includes multiple cores, the
multicore processor may be a single processor with multiple
cores or single-core processors connected in parallel. For
simplicity, single-core processors connected in parallel are
taken as an example in the present embodiment.

FIG. 1 is a hardware block diagram of a multicore proces-
sor system according to the present embodiment. As depicted
in FIG. 1, a multicore processor system 100 includes CPUs #0
to #7, a shared memory 103, a bus 101, and an arbitration
circuit 102. CPUs #0 to #7 are connected to the bus 101 via the
arbitration circuit 102. Components of the multicore proces-
sor system 100 other than CPUs #0 to #7 are connected to
each other via the bus 101. In the present embodiment, a
common resource shared by CPUs #0 to #7 is the bus 101.

CPUs #0 to #7 include registers and caches, respectively.
CPU#0 executes the master OS and governs overall control of
the multicore processor system 100. The master OS includes
a scheduler 111 that controls assignment of application. The
scheduler 111 includes a control program that controls the
arbitration circuit 102 by determining an access ratio and
calculating the time slice. Each of CPUs #1 to #7 executes the
slave OS and a process(es) assigned thereto by the scheduler
111.

The arbitration circuit 102 arbitrates accesses of the bus
101 by CPUs #0 to #7 according to the access ratio. For
example, the arbitration circuit 102 registers access requests
from CPUs #0 to #7 into the request buffer, takes the access
requests in the order the access requests have been registered
in the request buffer, and permits the access request.

The shared memory 103 is shared by the multicore proces-
sor and includes a process table 121, a priority table 123, and
a boot program. For example, the shared memory 103
includes a read only memory (ROM), a random access
memory (RAM), and a flash ROM.

For example, the ROM stores therein the program. The
RAM is used as a work area of CPUs #0 to #7. The program
stored in the shared memory 103 is loaded on each CPU, and
the process coded therein is executed by each CPU. In the
present embodiment, the scheduler 111 includes a control
program that controls the arbitration circuit 102, and CPU#0
loads the master OS and executes the process coded therein.
Thus, CPU#0 executes the process coded in the control pro-
gram.

The process table 121 indicates which process is assigned
to which CPU and whether each CPU is executing a process
concerning the application assigned thereto. As well known,
aprocess is a unit of processing performed by an application.
Each CPU reads the process table 121 and stores the process
table 121 into the cache thereof. The scheduler 111 assigns a
process to any one of CPUs #0 to #7, and registers the CPU to
which the process is assigned into the process table 121.
When a switching of process (hereinafter, “task switch”)
occurs, the CPU registers the process of which execution has
been started into the process table 121. Upon completion of
the process, the CPU deletes information on the process from
the process table 121.

After rewriting the process table 121, the process tables
121 stored in the caches of all CPUs are updated by snooping.
The scheduler 111 detects a task dispatch, a task switch, or a
task completion by referring to the process table 121.

The priority table 123 stores the priority and an access
frequency of each process. Each CPU reads the priority table
123 stored in the shared memory 103, and stores the priority
table 123 into the cache thereof when the CPU is booted.

FIG. 2 is a diagram of an example of the priority table 123.
The priority table 123 indicates the priority and the access
frequency of each process, and includes a process field 201, a

10

15

20

25

30

35

40

45

50

55

60

65

4

granularity field 202, a priority field 203, a number of
accesses/iterations field 204, and a bus access frequency field
205.

The process field 201 stores the name of each process. An
application is divided into multiple processes by a designer of
the application or a compiler, and which process(es) is
executed is preliminary determined for each application.

The granularity field 202 indicates whether the process
stored in the process field 201 is a coarse-granularity process,
adoacross process, or a doall process. The granularity of each
process is analyzed by a compiler. An example of the granu-
larity of a process is explained with reference to the drawing.

FIG. 3 is a diagram of an example of the coarse-granularity
process. CPUs #2 to #7 are omitted in FIG. 3. For example,
the coarse-granularity process is a process such as a function
Func_start(hndl, &a) in a list 300.

FIG. 4 is a diagram of an example of the doall process.
CPUs #2 to #7 are omitted in FIG. 4. For example, the doall
process is a process such as a for statement in a list 400. Only
the i-th value of each coefficient is used in one iteration (i) of
the for statement in the list 400.

In the example of FIG. 4, processes concerning the for
statement in the list 400 are divided into two processes one of
which includes iterations 0 to (N/2-1) and the other includes
iterations N/2 to (N-1). The processes are synchronized only
upon completion of the processes, since there is no depen-
dency between the two processes.

FIG. 5 is a diagram of an example of the doacross process.
CPUs #2 to #7 are omitted in FIG. 5. For example, the
doacross process is a process such as a for statement in a list
500. There is a dependency between iterations (i) of the for
statement in the list 500 since b[i-2] is used for calculating
a[i]. The dependency between the iterations causes a frequent
snooping during the execution of the processes, thereby
increasing the number of accesses of the bus 101.

Here, reference of the description returns to FIG. 2; the
priority field 203 stores whether the priority is high. “HIGH”
indicates the priority is high, while “LOW” indicates the
priority is not high. In the present embodiment, the priority of
the doacross process is set to be high, while the priorities of
the doall process and the coarse-granularity process are set
not to be high. The priority may arbitrarily determined by a
designer of the application.

The number of accesses/iterations field 204 indicates the
number of accesses of the cache if the process is indicated in
the granularity field 202 as a coarse-granularity process or a
doall process. On the other hand, the number of accesses/
iterations field 204 indicates the number of iterations if the
process indicated in the granularity field 202 as a doacross
process. The number of accesses/iterations of each process is
analyzed by a compiler.

The bus access frequency field 205 stores the frequency
(access frequency) of access to the bus 101 by each process.
The bus access frequency is an indicator of the frequency of
cache access by the process, indicated as 1 access per number
seconds. Calculation ofthe bus access frequency is described.
The bus access frequency of a coarse-granularity process and
that of a doall process are determined based on the following
equation (1), while the bus access frequency of a doacross
process is determined based on the following equation (2).

Bus access frequency of coarse-granularity process or
a doall process=t/s]/(a(1-0)) [number of times]

M

Bus access frequency of doacross process=t/s//i[num-

ber of times] 2)

“t” represents the execution time of a process, “a” repre-
sents the number of accesses of the cache, “0” represents the

US 9,141,429 B2

5

cache hit rate, “1-0" represents the cache miss rate, and
represents the number of iterations.

The access frequency of process A is 0.00005 ift=0.01 [s],
the number of accesses is 2000, and 0=0.9. The access fre-
quency of process A-1 is 0.0002 if t=0.01 [s], the number of
accesses is 1000, and 0=0.95.

The access frequency of process A-1-1 is 0.0000001 if
t=0.01 [s] and the number of iterations is 10000. The access
frequency of process A-1-2 is 0.0001 if t=0.01 [s], the number
of accesses is 1000, and 0=0.9.

The access frequency of process A-2 is 0.0001 ift=0.01 [s],
the number of accesses is 1000, and 0=0.9. The access fre-
quency of process B is 0.0001 if t=0.01 [s], the number of
accesses is 1000, and 0=0.9. The access frequency of process
Cis 0.0001 if t=0.01 [s], the number of accesses is 1000, and
0=0.9.

Here, reference of the description returns to FIG. 1; the
multicore processor system 100 includes an interface (I/F), a
display, and akeyboard (not depicted). The I/F is connected to
a network such as a local area network (LAN), a wide area
network (WAN), and the Internet via a communication line,
and to other devices through the network. The I/F administers
an internal interface with the network and controls the input/
output of data from/to an external device(s). For example, a
modem or a LAN adapter is employed as the I/F.

The display displays a cursor, an icon(s), a tool box(es),
and data such as a document, an image, and functional infor-
mation. For example, a CRT display, a TFT liquid-crystal
display, or a plasma display is employed as the display. The
keyboard includes keys for inputting characters, numerals,
various instructions, etc. and performs the input of data. Alter-
natively, a touch-panel-type input pad or numeric keypad, etc.
can be adopted.

FIG. 6 is a block diagram illustrating an operation of the
scheduler 111. For example, the scheduler 111 includes a
detecting unit 601, an obtaining unit 602, a determining unit
603, a calculating unit 604, and a notifying unit 605. For
example, each functional unit (i.e., the detecting unit 601 to
the notifying unit 605) is implemented by CPU#0 executing
the scheduler 111 stored in the shared memory 103.

The detecting unit 601 detects a change in the assignment
state of the multicore processor. If a change in the assignment
state is detected by the detecting unit 601, the obtaining unit
602 obtains, after the change, the number of accesses of the
bus 101 by each ofthe processes that are assigned to the CPUs
of the multicore processor.

The calculating unit 604 calculates the access ratio based
on the number of accesses obtained by the obtaining unit 602.
The notifying unit 605 notifies the arbitration circuit 102 of
the access ratio calculated by the calculating unit 604.

For example, a change in the assignment state of the mul-
ticore processor is caused by an assignment of process, a
switching of process, or a completion of process. A process
performed by each functional unit upon detection of the
assignment of process, the switching of process, or the
completion of process is described below.

The detecting unit 601 detects an assignment of process.
The obtaining unit 602 obtains the priority of the process
assigned in the assignment detected by the detecting unit 601,
and the priority of and the number of accesses by each of the
processes after the assignment that are assigned to the CPUs.

The determining unit 603 determines, based on a given
standard, whether the priority of the process assigned in the
assignment is high and whether the processes assigned to the
CPUs include a process having a high priority. The calculat-
ing unit 604 calculates the access ratio based on the number of
accesses obtained by the obtaining unit 602 if the determining

73233
1

10

25

40

45

55

6

unit 603 determines the priority of the process assigned in the
assignment is high or there is a process having a high priority.
The notifying unit 605 notifies the arbitration circuit 102 of
the access ratio calculated by the calculating unit 604.

The obtaining unit 602 also obtains the priority of the
process assigned in the assignment detected by the detecting
unit 601, the priority of and the number of accesses by each
process assigned to the CPU and the access frequency deter-
mined based on the execution time of each process.

The determining unit 603 determines, based on a given
standard, whether the priority of the process assigned in the
assignment is high and whether the processes assigned to the
CPUs include a process having a high priority. The calculat-
ing unit 604 calculates the access ratio based on the access
frequency obtained by the obtaining unit 602 if the determin-
ing unit 603 determines the priority of the process assigned in
the assignment is high or there is a process having a high
priority. The notifying unit 605 notifies the arbitration circuit
102 of' the access ratio calculated by the calculating unit 604.

The detecting unit 601 also detects a switching of process.
The obtaining unit 602 obtains the priority of and the number
of'accesses by each of the processes after the switching that
are assigned to the CPUs if the detecting unit 601 detects the
switching.

The determining unit 603 determines, based on a given
standard, whether the processes assigned to the CPUs include
aprocess of which priority obtained by the obtaining unit 602
is high. The calculating unit 604 calculates the access ratio
based on the number of accesses obtained by the obtaining
unit 602 if the determining unit 603 determines the processes
assigned to the CPUs include a process having a high priority.
The notifying unit 605 notifies the arbitration circuit 102 of
the access ratio calculated by the calculating unit 604.

The obtaining unit 602 obtains the priority of and the
number of accesses by each process assigned to the CPU and
the access frequency determined based on the execution time
of'each process if the detecting unit 601 detects the switching.

The determining unit 603 determines, based on a given
standard, whether the processes assigned to the cores include
aprocess of which priority obtained by the obtaining unit 602
is high. The calculating unit 604 calculates the access ratio
based on the access frequency obtained by the obtaining unit
602 if the determining unit 603 determines the processes
assigned to the cores include a process having a high priority.

The detecting unit 601 also detects the completion of pro-
cess. The obtaining unit 602 obtains, after the completion, the
priority of and the number of accesses by each of the pro-
cesses that are assigned to the CPUs if the detecting unit 601
detects the completion. The determining unit 603 determines,
based on a given standard, whether the processes assigned to
the CPUs include a process of which priority obtained by the
obtaining unit 602 is high.

The calculating unit 604 calculates the access ratio based
on the number of accesses obtained by the obtaining unit 602
if the determining unit 603 determines the processes include
a process having a high priority. The notifying unit 605 noti-
fies the arbitration circuit 102 of the access ratio calculated by
the calculating unit 604.

The obtaining unit 602 obtains the priority of and the
number of accesses by each process assigned to the CPU and
the access frequency determined based on the execution time
of each process if the detecting unit 601 detects the comple-
tion. The determining unit 603 determines, based on a given
standard, whether the processes assigned to the cores include
aprocess of which priority obtained by the obtaining unit 602
is high.

US 9,141,429 B2

7

The calculating unit 604 calculates the access ratio based
on the access frequency obtained by the obtaining unit 602 if
the determining unit 603 determines the processes include a
process having a high priority. The notifying unit 605 notifies
the arbitration circuit 102 of the access ratio calculated by the
calculating unit 604.

Taking the above description into account, detailed
description is provided below with reference to the drawings.

FIG. 7 is a diagram of a first example of assignment of
processes. Process A is assigned to CPU#0 and process B is
assigned to CPU#6. The scheduler 111 detects a task dispatch
of process C to CPU#7.

Upon detection of the task dispatch, the scheduler 111
obtains the priority of process C from the priority table 123,
and determines whether the priority of process C is high.
Here, the priority of process C is determined not to be high. In
this case, the scheduler 111 determines the access ratio of
CPUs as 1:1. In other words, the scheduler 111 causes the
arbitration circuit 102 to control accesses of the bus 101 by
the CPUs according to round robin.

The scheduler 111 identifies processes assigned to the
CPUs, and obtains the number of accesses/iterations of each
of the identified processes and the number of accesses by
process C from the priority table 123. Here, process A and
process B are identified. The number of accesses by process A
is 2000, the number of accesses by process B is 1000, and the
number of accesses by process C is 1000. The scheduler 111
calculates the time slice according to the following equation
3).

Time slice=given period of time [ms]/total of number
of accesses [number of times]

3

The scheduler 111 calculates the time slice by calculating
the total of the number of accesses and dividing a given period
of'time by the calculated total. In the present embodiment, the
given period of time is 0.1 [ms]. Thus, the time slice is
calculated as follows.

Time slice=0.1/(2000+1000+1000)=0.000025

The scheduler 111 notifies the arbitration circuit 102 of the
determined access ratio and the calculated time slice.

FIG. 81is adiagram of a first example of arbitrating accesses
based on the notified access ratio. In the example of FIG. 8,
access requests from the CPUs (indicated by square in the
figure, and the number in the square corresponds to the num-
ber of each CPU) are alternately registered into a request
buffer 800 since the access ratiois 1:1. Accesses are permitted
sequentially from the top of the request buffer 800. ts is the
time slice, and is 0.000025.

FIG. 9 is a diagram of a second example of assignment of
processes. Process A-2 master is assigned to CPU#3, process
A-2 slave is assigned to CPU#4, process A-2 slave is assigned
to CPU#5, process B is assigned to CPU#6, and process C is
assigned to CPU#7.

It is assumed a task switch from process A to process A-1
occurs on CPU#0 to which process A has been assigned. The
scheduler 111 detects the task switch and identifies processes
assigned to the CPUs, namely, process A-1, process A-2 mas-
ter, two process A-2 slaves, process B, and process C. As
described above, the scheduler 111 detects a task switch or a
task completion by referring to the process table 121.

The scheduler 111 obtains the priority of each of the iden-
tified processes from the priority table 123, and determines
whether the identified processes include a process having a
high priority. The scheduler 111 determines the identified
processes include no process having a high priority since the
priorities of process A-1, process A-2 master, two process A-2
slaves, process B, and process C are not high.

10

15

20

25

30

35

40

45

50

55

60

65

8

The scheduler 111 determines the access ratio of CPUs as
1:1 if the assigned processes include no process having a high
priority. In other words, the scheduler 111 causes the arbitra-
tion circuit 102 to control accesses of the bus 101 by the CPUs
according to round robin.

The scheduler 111 obtains the number of accesses/itera-
tions of each of the identified processes from the priority table
123. Here, process A and process B are identified. The num-
ber of accesses by process A-1 is 1000, the number of
accesses by process A-2 is 1000, the number of accesses by
process B is 1000, and the number of accesses by process C is
1000. The scheduler 111 calculates the time slice according to
the above equation (3). Thus, the time slice is calculated as
follows.

Time slice=0.1/(1000+1000+1000+1000)=0.000025

The scheduler 111 notifies the arbitration circuit 102 of the
determined access ratio and the calculated time slice.

FIG. 10 is a diagram of a second example of arbitrating
accesses based on the notified access ratio. In the example of
FIG. 10, access requests from the CPUs (indicated by square
in the figure, and the number in the square corresponds to the
number of each CPU) are alternately registered into the
request buffer 800 since the access ratio is 1:1. Accesses are
permitted sequentially from the top of the request buffer 800.
ts is the time slice, and is 0.000025.

FIG. 11 is a diagram of a third example of assignment of
processes. Process A-1-2 is assigned to CPU#2, process A-2
master is assigned to CPU#3, process A-2 slave is assigned to
CPU#, process A-2 slave is assigned to CPU#5, process B is
assigned to CPU#6, and process C is assigned to CPU#7.

It is assumed a task switch from process A-1 to process
A-1-1 occurs on CPU#0 to which process A-1 has been
assigned, and a task dispatch of process A-1-1 slave to CPU#1
occurs. The scheduler 111 detects the task dispatch subse-
quent to the task switching.

Upon detection of the task dispatch, the scheduler 111
obtains the priority of process A-1-1 slave assigned by the
task dispatch from the priority table 123, and determines
whether the priority of A-1-1 slave is high based on the
priority table 123. Here, the priority of A-1-1 slave is deter-
mined to be high since the priority of A-1-1 is high.

In this case, the scheduler 111 calculates the access ratio
according to the number of accesses. For example, the access
ratio may be calculated based on the number of accesses, or
based on the access frequency calculated based on the number
of'accesses. An example of calculating the access ratio based
on the number of accesses is described. The scheduler 111
obtains the number of accesses/iterations of each of the pro-
cesses assigned to the CPUs from the priority table 123.

The number of accesses by process A-1-1 is 10000, the
number of accesses by process A-1-2 is 1000, the number of
accesses by process A-2 is 1000, the number of accesses by
process B is 1000, and the number of accesses by process C is
1000. The scheduler 111 identifies the number of CPUs to
which doacross processes are assigned, and calculates the
access ratio as follows.

CPU#0:CPU#1:CPU#2:CPU#3:CPU#4:CPU#5:CPU#6:
CPU#7 =number of accesses by process A-1-1/2:number of
accesses by process A-1-1/2:number of accesses by process
A-1-2:number of accesses by process A-2:number of
accesses by process A-2:number of accesses by process
B:number of accesses by process C =5000:5000:1000:1000:
1000:1000:1000:1000 =5:5:1:1:1:1:1:1

The value for a CPU to which a doacross process is
assigned is calculated based on the number of iterations/the
number of CPUs to which doacross processes are assigned.

US 9,141,429 B2

9

Although the value for a CPU to which a doall process is
assigned is calculated based on the number of accesses in the
above example, the value may be the number of accesses/the
number of CPUs to which doall processes are assigned.

An example of calculating the access ratio based on the
access frequency is described. The access frequency is an
indicator of the frequency of cache access by the process,
indicated as 1 access per number seconds. The scheduler 111
obtains the access frequency of each of the processes assigned
to CPUs from the priority table 123, and determines the
access ratio according to the access frequency.

The access frequency of process A-1-1is 10"-6 [s/number
oftimes], the access frequency of process A-1-2 is 10"-4, the
access frequency of process A-2 is 104, the access fre-
quency of process B is 10°-4, and the access frequency of
process C is 10°—4. “”” represents an exponent, and “10°-6"
represents 10 to the minus 6th power. Process A-1-1 accesses
the cache 100 times more frequently than the other processes
assigned to the CPUs, and is divided into two processes.

The scheduler 111 calculates the access ratio of processes
based on the access frequency as follows.

Process A-1-1:process A-1-2:process A-2:process B:pro-
cess C=100:1:1:1:1

The scheduler 111 identifies the number of CPUs to which
doacross processes are assigned. Here, process A-1-1 is
assigned to two CPUs. The scheduler 111 determines the
access ratio as follows.

CPU#0:CPU#1:CPU#2:CPU#3:CPU#4:CPU#5:CPU#6:
CPU#7 =value for process A-1-1/2:value for process A-1-1/
2:value for process A-1-2:value for process A-2:value for
process A-2:value for process A-2:value for process B:value
for process C =50:50:1:1:1:1:1:1

Process A-1-1 accesses the cache 100 times per time period
of 0.1 [ms] since the execution time and the number of itera-
tions is 10000. Thus, CPUs #0 and #1 to which process A-1-1
is assigned access the bus 101 50 times per the time period of
0.1 [ms], respectively, since process A-1-1 is divided into two.

On the other hand, process A-1-2 accesses the cache once
per thetime period of 0.1 [ms] since t=0.01 [s] and the number
of'accesses is 1000. Thus, CPU#2 to which process A-1-2 is
assigned accesses the bus 101 once per the time period of 0.1
[ms].

The difference between the number of accesses of process
A-1-1 and that of process A-1-2 is only 10-fold. However,
process A-1-1 accesses the cache 100 times more frequently
than process A-1-2 during a given time period, since the
execution time is the same. Thus, an optimal access ratio can
be determined according to the execution time and the num-
ber of accesses by calculating a relative access ratio according
to the access frequency. The scheduler 111 calculates the time
slice according to the above equation (3) as follows.

Time slice=0.1/(1000+1000+1000+1000)=0.000025

The scheduler 111 notifies the arbitration circuit 102 of the
calculated access ratio and the time slice.

FIG. 12 is a diagram of a third example of arbitrating
accesses based on the notified access ratio. FIG. 12 illustrates
an example of notifying the arbitration circuit 102 of the
access ratio calculated based on the access frequency. Here,
the arbitration circuit 102 arbitrates accesses according to a
weighted round robin. An access request from CPU#0 or #1 is
temporarily suspended when the time slice of the access
request has elapsed, and input into the end of the request
buffer 800 only once per 50 times (i.e., the number of accesses
per unit of time) and is otherwise input into the top of the
request buffer 800.

10

15

20

25

30

35

40

45

55

60

65

10

In other words, one access request from any one of CPUs
#2 to #7 is registered into the request bufter 800 when 50
access requests from CPU#0 or #1 are registered.

Conventionally, CPU#0 to which a doacross process is
assigned has to wait for access to the bus 101 78 times per 0.1
[ms] since the access ratios are 1:1. On the other hand, accord-
ing to the third example, CPU#0 to which a doacross process
is assigned waits for access to the bus 101 6 times per 0.1
[ms], thereby reducing the wait time for the right to access the
bus and reducing the execution time.

In the present embodiment, although the access frequency
is an indicator of the frequency of cache access by the process
interms of 1 access per number seconds, the access frequency
may be an indicator of the number of times that the process
accesses the cache during a given time period.

In the present embodiment, the priority of each of the
processes assigned to the CPUs may be obtained after the
detected change in the assignment state, and the access ratio
may be determined based on the number of accesses if a
process having a high priority is assigned.

FIG. 13 is a flowchart of a control performed by the sched-
uler 111. Here, an example of calculating the access ratio
based on the access frequency is described. The scheduler 111
determines whether a change in the assignment state of the
multicore processor is detected (step S1301). If not (step
S1301: NO), the process returns to step S1301.

On the other hand, if the scheduler 111 detects a task
dispatch (step S1301: TASK DISPATCH), the scheduler 111
obtains the priority of the dispatched process (step S1302)
and determines whether the priority is high (step S1303). If
the scheduler 111 determines the priority is not high (step
S1303: NO), the process transitions to step S1304.

On the other hand, if the scheduler 111 detects a task switch
or a task completion (step S1301: TASK SWITCH or TASK
COMPLETION), the process transitions to step S1304. The
scheduler 111 obtains the priority of each of the processes
assigned to the CPUss (step S1304), and determines whether a
process having a high priority is under execution based on the
obtained priorities (step S1305). Here, a process assigned to
any one of the CPUs is the process being executed by the
CPU.

If the scheduler 111 determines no process having a high
priority is under execution (step S1305: NO), the scheduler
111 determines the values constituting the access ratio to be
the same (step S1306), and the process transitions to step
S1309. In other words, the scheduler 111 controls the arbi-
tration circuit 102 to arbitrate accesses from the CPUs
according to round robin.

If the scheduler 111 determines the obtained priority is
high (step S1303: YES) or a process having a high priority is
under execution (step S1305: YES), the scheduler 111 obtains
the access frequency of each of the processes assigned to the
CPUs (step S1307), and calculates the access ratio of CPUs
based on the access frequency (step S1308), and the process
transitions to step S1309.

Subsequent to step S1306 or S1308, the scheduler 111
obtains the number of accesses by each of the processes
assigned to the CPUs (step S1309), calculates the total of the
number of accesses by each of the processes assigned to the
CPUs (step S1310), and calculates the time slice=unit of
time/total (step S1311). The scheduler 111 notifies the arbi-
tration circuit 102 of the access ratio and the time slice (step
S1312), and the process returns to step S1301.

As described above, if the assignment state of the cores has
changed, the multicore processor system, the control pro-
gram, and the control method calculate the access ratio based
on the number of accesses by each of the processes after the

US 9,141,429 B2

11

change that are assigned to the cores. In other words, an
optimal access ratio is determined according to the combina-
tion of processes under execution, thereby reducing the wait
time of a process that accesses the bus frequently, and reduc-
ing the execution time of the process.

Further, the access ratio is calculated based on the number
of accesses by each of the processes assigned to the CPUS5, if
an assignment of process is detected and the process assigned
in the assignment has a high priority. Thus, the wait time of a
process that has a high priority and accesses the bus fre-
quently is reduced, thereby accelerating the process per-
formed by the CPU to which the process is assigned, and
improving the throughput.

Further, the access ratio is calculated based on the number
of accesses by each of the processes assigned to the CPUS5, if
an assignment of process is detected and the process assigned
in the assignment has a high priority or a process having a
high priority is under execution. Thus, the wait time of a
process that has a high priority and accesses the bus fre-
quently is reduced, thereby accelerating the process per-
formed by the CPU to which the process is assigned, and
improving the throughput.

Further, the access ratio is calculated based on the number
of accesses by each process if a switching of process is
detected and a process having a high priority is under execu-
tion even after the switching. Thus, the wait time of a process
that accesses the bus frequently is reduced, thereby acceler-
ating the process performed by the CPU to which the process
is assigned, and improving the throughput.

Further, the access ratio is calculated based on the number
of accesses by each process if the completion of process is
detected and a process having a high priority is under execu-
tion even after the completion of the process. Thus, the wait
time of a process that accesses the bus frequently is reduced,
thereby accelerating the process performed by the CPU to
which the process is assigned, and improving the throughput.

Further, a relative access ratio is calculated based on the
access frequency, thereby reducing the wait time of a process
that accesses the bus frequently during a given time period.

All examples and conditional language provided herein are
intended for pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although one or more embodiments
of the present invention have been described in detail, it
should be understood that the various changes, substitutions,
and alterations could be made hereto without departing from
the spirit and scope of the invention.

What is claimed is:
1. A multicore processor system comprising a core config-
ured to:

detect a change in a state of assignment of a multicore
processor;

obtain, upon detecting the change in the state of assign-
ment, a number of accesses by processes, assigned to
cores of the multicore processor, of a common resource
shared by the multicore processor;

calculate an access ratio based on the obtained number of
accesses; and

notify an arbitration circuit of the calculated access ratio,
the arbitration circuit arbitrating accesses of the com-
mon resource by the multicore processor.

20

25

30

35

40

45

50

55

60

65

12

2. The multicore processor system according to claim 1, the
core further configured to determine whether a priority is high
based on a given standard, wherein

the core detects an assignment of a process,

the core obtains the priority of the process assigned in the

detected assignment, and after the assignment, obtains
the number of accesses by the processes assigned to the
cores,

the core determines whether the priority of the process

assigned in the assignment is high based on the given
standard, and

the core, upon determining that the priority of the process

assigned in the assignment is high, calculates the access
ratio based on the obtained number of accesses.

3. The multicore processor system according to claim 2,
wherein

the core obtains the priority of the process assigned in the

assignment, the number of accesses by the processes,
and an access frequency determined based on an execu-
tion time of the processes,

the core determines whether the priority of the process

assigned in the assignment is high based on the given
standard, and

the core, upon determining that the priority of the process

assigned in the assignment is high, calculates the access
ratio based on the obtained access frequency.
4. The multicore processor system according to claim 2,
wherein
the core obtains the priority of the process assigned in the
detected assignment, the priority of and the number of
accesses by the processes, and an access frequency
determined based on an execution time of the processes,

the core determines whether the priority of the process
assigned in the assignment is high based on the given
standard, and upon determining that the priority of the
process assigned in the assignment is not high, deter-
mines, whether the processes assigned to the cores
include a process of which the obtained priority is high
based on the given standard, and

the core, upon determining that the processes assigned to

the cores include a process of which the obtained prior-
ity is high, calculates the access ratio based on the
obtained access frequency.

5. The multicore processor system according to claim 1, the
core further configured to determine whether a priority is high
based on a given standard, wherein

the core detects an assignment of a process,

the core obtains the priority of the process assigned in the

detected assignment, and after the assignment, obtains
the priority of and the number of accesses by the pro-
cesses assigned to the cores,

the core determines whether the priority of the process

assigned in the assignment is high based on the given
standard, and upon determining that the priority of the
process assigned in the assignment is not high, deter-
mines whether the processes assigned to the cores
include a process of which the obtained priority is high
based on the given standard, and

the core, upon determining that the processes assigned to

the cores include a process having a high priority, cal-
culates the access ratio based on the obtained number of
accesses.

6. The multicore processor system according to claim 1, the
core further configured to determine whether a priority is high
based on a given standard, wherein

US 9,141,429 B2

13

the core detects a switching of a process,
the core obtains, upon detecting the switching, the priority
of and the number of accesses by the processes that are
assigned to the cores,
the core determines whether the processes assigned to the
cores include a process of which the obtained priority is
high based on the given standard, and
the core, upon determining that the processes assigned to
the cores include a process having a high priority, cal-
culates the access ratio based on the obtained number of
accesses.
7. The multicore processor system according to claim 6,
wherein
the core obtains, upon detecting the switching, the priority
of'and the number of accesses by the processes assigned
to the cores, and an access frequency determined based
on an execution time of the processes,
the core determines whether the processes assigned to the
cores include a process of which the obtained priority is
high based on the given standard, and
the core, upon determining that the processes assigned to
the cores include a process having a high priority, cal-
culates the access ratio based on the obtained access
frequency.
8. The multicore processor system according to claim 1,
wherein
the core detects a completion of a process,
the core obtains, upon detecting the completion, the prior-
ity of and the number of accesses by the processes that
are assigned to the cores,
the core determines whether the processes assigned to the
cores include a process of which the obtained priority is
high based on the given standard, and
the core, upon determining that the processes include a
process having a high priority, calculates the access ratio
based on the obtained number of accesses.
9. The multicore processor system according to claim 8,
wherein
the core obtains, upon detecting the completion, the prior-
ity of and the number of accesses by the processes, and

15

25

30

35

14

an access frequency determined based on an execution
time of each of the processes,

the core determines whether the processes assigned to the

cores include a process of which the obtained priority is
high based on the given standard, and

the core, upon determining that the processes include a

process having a high priority, calculates the access ratio
based on the obtained access frequency.

10. A computer-readable non-transitory recording medium
storing a control program causing a core of a multicore pro-
cessor to execute a process comprising:

detecting a change in a state of assignment of the multicore

processor;
obtaining, when the change in the state of assignment is
detected at the detecting, a number of accesses by pro-
cesses, assigned to cores of the multicore processor, of a
common resource shared by the multicore processor;

calculating an access ratio based on the number of accesses
obtained at the obtaining; and

notifying an arbitration circuit of the access ratio calcu-

lated at the calculating, the arbitration circuit arbitrating
accesses of the common resource by the multicore pro-
Ccessor.

11. A control method executed by a core of a multicore
processor, the method comprising:

detecting a change in a state of assignment of the multicore

processor;
obtaining, when the change in the state of assignment is
detected at the detecting, a number of accesses by pro-
cesses, assigned to cores of the multicore processor, of a
common resource shared by the multicore processor;

calculating an access ratio based on the number of accesses
obtained at the obtaining; and

notifying an arbitration circuit of the access ratio calcu-

lated at the calculating, the arbitration circuit arbitrating
accesses of the common resource by the multicore pro-
Ccessor.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,141,429 B2 Page 1 of 1
APPLICATION NO. : 13/624353

DATED : September 22, 2015

INVENTORC(S) : Hiromasa Yamauchi et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, (72) Inventors, Line 1

Delete “(JE);” and insert --(JP);--, therefor.

Signed and Sealed this
Eighth Day of December, 2015

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

